debian



Guide for Debian Maintainers

Osamu Aoki

November 10, 2023



Guide for Debian Maintainers
by Osamu Aoki

Copyright © 2014-2021 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED ”AS 1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This guide was made using the following previous documents as its reference:
» “Making a Debian Package (AKA the Debmake Manual)”, copyright © 1997 Jaldhar Vyas.
* “The New-Maintainer’s Debian Packaging Howto”, copyright © 1997 Will Lowe.

* “Debian New Maintainers’ Guide”, copyright © 1998-2002 Josip Rodin, 2005-2017 Osamu Aoki, 2010
Craig Small, and 2010 Raphaél Hertzog.

The latest version of this guide should be available:

* in the debmake-doc package and

« at the Debian Documentation web site.



https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Contents

1 Overview

2 Prerequisites
2.1 Peoplearound Debian . . . . . . . . . . . .. e e
2.2 Howtocontribute . . . . . . . . . e e e e e
2.3 Social dynamicsof Debian . . . . . . ...
2.4 Technical reminders . . . . . . . . . . . L e e e e e e e
2.5 Debiandocumentation . . . . . . ... L. e e e e e e
2.6 HeIpTesources . . . . . . . i i i it e e e e e e e e e e e e
2.7 Archivesituation . . . . . . . . . . . e e e e e
2.8 Contribution approaches . . . . . . . . . e
2.9 Novice contributor and maintainer . . . . . . . . . . ... .o
3 Tool Setups
3.1 Emailaddress . . . . . . . . e e
32 IMC « o vt e e e e e e e e e e e e e e e
3.3 gt .
34 quilt . .. e
3.5 devsCripts . . . . . e e e e e e e e e e e
3.6 sbuild . . ... e
3.7 git-buildpackage . . . . . ...
3.8 HTTPPIOXY . . . o o o e e e e e e e e e e e e e e e e e e e e e
3.9 Private Debian repository . . . . . . . . o .. e e e e e e e e e e e e e e e
3.10 Virtual machines . . . . . . . . e e e e
3.11 Local network with virtual machines . . . . . . . . .. ... ... ... ... . ... . ...
4 Simple Example
4.1 Packagingtarball . . . . . . . . ... e
4.2 BIgPICIUIEe . . . . . . e e e e e e e e e e e e e e e e e
4.3 Whatisdebmake? . . . . . . L e
4.4 Whatisdebuild? . . . . . . ... e
4.5 Step 1: Getthe upstream SOUICE . . . . . . v v v v v e e e e e e e e e e e e e e e e
4.6 Step 2: Generate template files with debmake . . . . . ... ... ... ... ... ........
4.7 Step 3: Modification to the template files . . . . ... ... ... .. Lo
4.8 Step 4: Building package withdebuild . . . . . . .. ... .. oL oo
4.9 Step 3 (alternative): Modification to the upstream source . . . . . . .. .. ... ... ... ...
49.1 Patchbydiff-u .. ... .. ... . e
4.9.2 Patchbydquilt . . ... ... .. e
4.9.3 Patch by dpkg-source --commit . . .. ... ... ... ...
5 Basics
5.1 Packaging workflow . . . . . . . . e e
5.1.1 The debhelper package . ... ... ... . ... ... ...
5.2 Historical perspective of Debian packaging practices . . . ... .. ... ... ... .......
5.3 Future perspective on Debian packaging practices . . . . . . . .. ... .. ... ..
5.4 Package name and VEISION . . . . . . . . .. i e e e e e e e e e e e e e e e e
5.5 Native Debian package . . . . . . . . . . . . e e e e
5.6 debian/rules . . . . .. e e e e
5.6.1 dh ... e
5.6.2 Simpledebian/rules. . . . . . . L.
5.6.3 Customized debian/rules . . . . . . . .. L
5.6.4 Variables fordebian/rules . . . . .. ...
5.6.5 Reproduciblebuild . . . . .. ... ... ...
5.7 debian/control . . . . ... L e e e

ii

j—

CONOUTUl A B WwWww

© O ©

10
10
11
11
12
13
13
13
13

14
14
14
15
16
16
17
21
23
26
26
27
28



CONTENTS

5.7.1 Split of a Debian binary package . . . . . . . .. .. ... 39
5.7.1.1 debmake-b . . . ... 39

5.7.1.2  Package split scenario and examples . . . . .. ... ... ... ... ... 40

5.7.1.3 The library packagename . . . . . . .. .. . ... ... ... 40

5.7.2 Substvar . . .. e e e e e 41

5.7.3 binNMUsafe . . . . . . . . e e e 41

5.8 debian/changelog . . . . . . . . L 42
5.9 debian/copyright . . . . . . L e e e e e e 43
5.10 debian/patches/* . . . . . . . . e e e e e e 43
5.10.1 dpkg-source -X . . . . . . ..o e e e e e e e e e e e e 45
5.10.2 dquiltand dpkg-source . . . . . . . ... 45

5.11 debian/upstream/signing-key.asc . . . . . . . . . . ... e e e e e 45
5.12 debian/watchand DFSG . . . . . . . . . . . e 46
5.13 Otherdebian/* Files . . . . . . . . . o o o i e e e e e 46
5.14 Customization of the Debian packaging . . . . . . . . .. ... .. ... ... ... ... 50
5.15 Recordingin VCS (standard) . . . . . . . . . . . L 51
5.16 Recording in VCS (alternative) . . . . . . . . . . . o L e e e e 51
5.17 Building package without extraneous contents . . . . . . . . . .. ... ..o el 52
5.17.1 Fixbydebian/rulesclean . . . . . . . . . . . . .. e 52
5.17.2 Fixusing VCS . . . . . o e e e e e 52
5.17.3 Fix by extend-diff-ignore . . . . . . ... ... 53
5.17.4 Fixbytar-ignore . . . . . . . . . . . e e e e e e 53

5.18 Upstream build systems . . . . . . . . . . L. e e e e 54
5.18.1 AUOtoOls . . . . .. e e e e e e e e e 54
5.18.2 CMake . . . . . . i i i e e e e 54
5183 MeSON . . . . v vt e e e e e e e e e 55
5.18.4 Pythondistutils . . . . . . . . ... 55

5.19 Debugging information . . . . . . . . ... L 55
5.19.1 New -dbgsym package (Stretch 9.0 and after) . . . . . ... ... ... ... .. ..... 56

5.20 Library package . . . . . . . . . e e e e e e e e e e e 56
5.20.1 Librarysymbols . . . . . . . . . . . e e 57
5.20.2 Library transition . . . . . . . . ... L e e e 58

521 debconf . . . . . e e e 58
522 Multiarch . . . . . . . e e e e 58
5.22.1 The multiarch librarypath . . . . . . . . . .. . . . . 59
5.22.2 The multiarch header filepath . . . . .. ... .. ... ... .. ... ... ....... 60
5.22.3 The multiarch *.pcfilepath . . . . . . . .. .. ... 60

5.23 Compiler hardening . . . . . . . . . . .. e e 60
5.24 Continuous iNtegration . . . . . . . . vt v vttt e e e e e e e e e e e e e e e e e e e e 61
5.25 Other new reqUIremMentS . . . . . . v v v v v v e e e e e e e e e e e e e e e e e e e e e 61
5.26 BOOLSrapping . . . . . . . o i e e e e e e e e e e e e e e e e e e e e 61
5.27 BUZTEPOILS . . . . . o e e e e e e e e e e e e e e e e e e e 61
6 debmake options 63
6.1 Shortcut options (-a, =1) . . . . . . .. . e e e e e e e e e e e 63
6.1.1 Pythonmodule . . . . . . . . .. 63

6.2 Snapshot upstream tarball (-d, -t) . . . . . . . . . ... 64
6.3 debmake-cc. . . . . ... e e e 64
6.4 debmake-k . . . ... 64
6.5 debmake-j . . . ... e e 65
6.6 debmake-x . . . ... e e 66
6.7 debmake -P . . . . .. e 66
6.8 debmake -T . . . . . . .. e e 66

1ii



CONTENTS

7 Tips

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10
7.11
7.12

7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

piuparts
debsign
dput
bts
git-buildpackage
7.8.1 gbp import-dscs --debsnap
7.8.2  Upstream git repository
dgit
7.9.1
chroot
New Debian revision
New upstream release
7.12.1 uupdate + tarball
7.12.2 uscan
7.12.3 gbp
7.12.4 gbp + uscan
3.0 source format
CDBS
Build under UTF-8
UTF-8 conversion
Upload orig.tar.gz
Skipped uploads
Advanced packaging
Other distros
Debug

8 More Examples

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

Al
A2
A3

A4
A5
A.6
A7
A8
A9

A.10 SEE ALSO

Cherry-pick templates
No Makefile (shell, CLI)
Makefile (shell, CLI)
setup.py (Python3, CLI)
Makefile (shell, GUI)
setup.py (Python3, GUI)
Makefile (single-binary package)
Makefile.in + configure (single-binary package)
Autotools (single-binary package)
CMake (single-binary package)
Autotools (multi-binary package)
CMake (multi-binary package)
Internationalization
Details

debmake(1) manpage

NAME

CAVEAT
DEBUG

AUTHOR
LICENSE

67
67
67
67
67
68
68
68
68
69
69
70
70
71
72
73
73
74
74
74
75
75
76
76
76
77
77
78
78

80
80
82
88
91
95
98
101
103
106
109
113
118
122
128

iv



Abstract

This “Guide for Debian Maintainers” (2023-11-10) tutorial guide describes the building of the Debian package
to ordinary Debian users and prospective developers using the debmake command.
This guide focuses on the modern packaging style and comes with many simple examples.

+ POSIX shell script packaging

+ Python3 script packaging

+ C with Makefile/Autotools/CMake

» multiple binary packages with shared library etc.

This “Guide for Debian Maintainers” can be considered as the successor to the “Debian New Maintainers’
Guide”.



Preface

If you are a somewhat experienced Debian user 1, you may have encountered following situations:
* You wish to install a certain software package not yet found in the Debian archive.
* You wish to update a Debian package with the newer upstream release.
* You wish to fix bugs of a Debian package with some patches.

If you wanted to create a Debian package to fulfill these wishes and to share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian community.

Debian has many social and technical rules and conventions to follow since it is a large volunteer organization
with history. Debian also has developed a huge array of packaging tools and archive maintenance tools to build
consistent sets of binary packages addressing many technical objectives:

+ packages build across many architectures (Section 5.6.4)

+ reproducible build (Section 5.6.5)

* clean build under clearly specified package dependencies and patches (Section 5.7, Section 5.10, Section 7.10)
« optimal splits into multiple binary packages (Section 5.7.1)

+ smooth library transitions (Section 5.20.2)

* interactive installation customization (Section 5.21)

+ multiarch support (Section 5.22)

* security enhancement using specific compiler flags (Section 5.23)

 continuous integration (Section 5.24)

* boot strapping (Section 5.26)

These make it somewhat overwhelming for many new prospective Debian maintainers to get involved with
Debian. This guide tries to provide entry points for them to get started. It describes the following:

» What you should know before getting involved with Debian as a prospective maintainer.

* What it looks like to make a simple Debian package.

What kind of rules exist for making the Debian package.
* Tips for making the Debian package.

» Examples of making Debian packages for several typical scenarios.

1You do need to know a little about Unix programming but you certainly don’t need to be a wizard. You can learn about the basic handling
of a Debian system from the Debian Reference. It contains some pointers to learn about Unix programming, too.

21If you are not interested in sharing the Debian package, you can certainly work around your local situation by compiling and installing
the fixed upstream source package into /usr/local/.

vi


https://www.debian.org/doc/user-manuals#quick-reference

PREFACE

The author felt limitations of updating the original “New Maintainers’ Guide” with the dh-make package and
decided to create an alternative tool and its matching document to address modern requirements. The result is the
debmake (version: 4.4.0) package and this updated “Guide for Debian Maintainers” in the debmake-doc (version:
1.17-9) package.

Many chores and tips have been integrated into the debmake command making this guide simple. This guide
also offers many packaging examples.

Caution

It takes many hours to properly create and maintain Debian packages. The De-
bian maintainer must be both technically competent and diligent to take up
this challenge.

Some important topics are explained in detail. Some of them may look irrelevant to you. Please be patient.
Some corner cases are skipped. Some topics are only covered by the external pointers. These are intentional choices
to keep this guide simple and maintainable.

vii



Chapter 1

Overview

The Debian packaging of the package-1.0.tar.gz, containing a simple C source following the GNU Coding Stan-
dards and FHS, can be done with the debmake command as follows.

$ tar -xvzf package-1.0.tar.gz
$ cd package-1.0
$ debmake
. Make manual adjustments of generated configuration files
$ debuild

If manual adjustments of generated configuration files are skipped, the generated binary package lacks mean-
ingful package description but still functions well under the dpkg command to be used for your local deployment.

Caution

must be manually adjusted to their perfection to comply with the strict quality re-
quirements of the Debian archive, if the generated package is intended for gen-
eral consumption.

: The debmake command only provides good template files. These template files

If you are new to Debian packaging, do not worry about the details and just get the big picture instead.

If you have been exposed to Debian packaging, this looks very much like the dh_make command. This is
because the debmake command is intended to replace functions offered historically by the dh_make command. 1

The debmake command is designed with the following features:

* modern packaging style

— debian/copyright: DEP-5 compliant
— debian/control: substvar support, multiarch support, multi binary packages, ...

— debian/rules: dh syntax, compiler hardening options, ...
« flexibility

— many options (Section 5.7.1.1, Chapter 6, Appendix A)
+ sane default actions

— execute non-stop with clean results

— generate the multiarch package, unless the -m option is explicitly specified.

— generate the non-native Debian package with the “3.0 (quilt)” format, unless the -n option is explicitly
specified.

* extra utility

1The deb-make command was popular before the dh_make command. The current debmake package starts its version from 4.0 to avoid
version overlaps with the obsolete debmake package, which provided the deb-make command.


https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

CHAPTER 1. OVERVIEW

— verification of the debian/copyright file against the current source (Section 6.4)

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper, dpkg-dev,
devscripts, sbuild, schroot, etc.

Tip

Make sure to protect the arguments of the -b, -f, -1, and -w options from shell

interference by quoting them properly.

The non-native Debian package is the normal Debian package.

The detailed log of all the package build examples in this document can be ob-

tained by following the instructions in Section 8.14.

The generation of the debian/copyright file, and the outputs from the -c (Sec-
% tion 6.3) and -k (Section 6.4) options involve heuristic operations on the copyright

and license information. They may produce some erroneous results.




Chapter 2

Prerequisites

Here are the prerequisites which you need to understand before you to get involved with Debian.

2.1 People around Debian

There are several types of people interacting around Debian with different roles:
 upstream author: the person who made the original program.
 upstream maintainer: the person who currently maintains the program.
* maintainer: the person making the Debian package of the program.

+ sponsor: a person who helps maintainers to upload packages to the official Debian package archive (after
checking their contents).

« mentor: a person who helps novice maintainers with packaging etc.

* Debian Developer (DD): a member of the Debian project with full upload rights to the official Debian
package archive.

* Debian Maintainer (DM): a person with limited upload rights to the official Debian package archive.

Please note that you can’t become an official Debian Developer (DD) overnight, because it takes more than
technical skill. Please do not be discouraged by this. If it is useful to others, you can still upload your package
either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you do not need to create any new packages to become an official Debian Developer. Con-
tributing to the existing packages can provide a path to becoming an official Debian Developer too. There are many
packages waiting for good maintainers (see Section 2.8).

2.2 How to contribute

Please refer to the following to learn how to contribute to Debian:
* How can you help Debian? (official)
* The Debian GNU/Linux FAQ, Chapter 13 - ”Contributing to the Debian Project” (semi-official)
+ Debian Wiki, HelpDebian (supplemental)
* Debian New Member site (official)

* Debian Mentors FAQ (supplemental)


https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

CHAPTER 2. PREREQUISITES 2.3. SOCIAL DYNAMICS OF DEBIAN

2.3 Social dynamics of Debian
Please understand Debian’s social dynamics to prepare yourself for interactions with Debian:
* We all are volunteers.

— You can’t impose on others what to do.

— You should be motivated to do things by yourself.
+ Friendly cooperation is the driving force.

— Your contribution should not over-strain others.

— Your contribution is valuable only when others appreciate it.
* Debian is not your school where you get automatic attention of teachers.

— You should be able to learn many things by yourself.

— Attention from other volunteers is a very scarce resource.
* Debian is constantly improving.

— You are expected to make high quality packages.
— You should adapt yourself to change.

Since we focus only on the technical aspects of the packaging in the rest of this guide, please refer to the
following to understand the social dynamics of Debian:

* Debian: 17 years of Free Software, “do-ocracy”, and democracy (Introductory slides by the ex-DPL)

2.4 Technical reminders

Here are some technical reminders to accommodate other maintainers to work on your package easily and effec-
tively to maximize the output of Debian as a whole.

» Make your package easy to debug.

— Keep your package simple.

— Don’t over-engineer your package.

+ Keep your package well-documented.

Use readable code style.

Make comments in code.

Format code consistently.

Maintain the git repository 1 of the package.

Note

Debugging of software tends to consume more time than writing the initial working

software.

1The overwhelming number of Debian maintainers use git over other VCS systems such as hg, bzr, etc.



http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

CHAPTER 2. PREREQUISITES 2.5. DEBIAN DOCUMENTATION

2.5 Debian documentation

Please make yourself ready to read the pertinent part of the latest Debian documentation to generate perfect Debian
packages:

+ “Debian Policy Manual”
— The official “must follow” rules (https://www.debian.org/doc/devel-manuals#policy)
+ “Debian Developer’s Reference”
— The official “best practice” document (https://www.debian.org/doc/devel-manuals#devref)
* “Guide for Debian Maintainers” — this guide
— A “tutorial reference” document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published to https://www.debian.org using the unstable suite versions of corresponding
Debian packages. If you wish to have local accesses to all these documents from your base system, please consider
to use techniques such as apt-pinning and chroot (Section 7.10).2

If this guide contradicts the official Debian documentation, the official Debian documentation is correct. Please
file a bug report on the debmake-doc package using the reportbug command.

Here are alternative tutorial documents, which you may read along with this guide:

* “Debian New Maintainers’ Guide” (older)

— https://www.debian.org/doc/devel-manuals#maint-guide

— https://packages.qa.debian.org/m/maint-guide.html
+ “Debian Packaging Tutorial”

— https://www.debian.org/doc/devel-manuals#packaging-tutorial

— https://packages.qa.debian.org/p/packaging-tutorial.html
» “Ubuntu Packaging Guide” (Ubuntu is Debian based.)

— http://packaging.ubuntu.com/html/

Tip

When reading these tutorials, you should consider using the debmake command
in place of the dh_make command.

2.6 Help resources

Before you decide to ask your question in some public place, please do your part of the effort, i.e., read the fine
documentation:

+ package information available through the aptitude, apt-cache, and dpkg commands.
« files in /usr/share/doc/package for all pertinent packages.
+ contents of man command for all pertinent commands.

« contents of info command for all pertinent commands.

21t is unwise to run your base system under the pure unstable suite even for the development system. Normally, most package development
activities use unstable chroot as in Section 7.10. By using virtualization, you can test demanding situation such as the full Desktop system,
network daemons, and system installer in the unstable suite environment even from the base system running the stable suite.



https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems

CHAPTER 2. PREREQUISITES 2.7. ARCHIVE SITUATION

+ contents of debian-mentors@lists.debian.org mailing list archive.
« contents of debian-devel @lists.debian.org mailing list archive.

Your desired information can be found effectively by using a well-formed search string such as “keyword
site:lists.debian.org” to limit the search domain of the web search engine.

Making a small test package is a good way to learn details of the packaging. Inspecting existing well maintained
packages is the best way to learn how other people make packages.

If you still have questions about the packaging, you can ask them interactively:

* debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)
* debian-devel @lists.debian.org mailing list. (This mailing list is for the expert.)
+ IRC such as #debian-mentors.
» Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)
+ Language-specific mailing lists.
— debian-devel-{french,italian,portuguese,spanish } @lists.debian.org

— debian-chinese-gb@lists.debian.org (This mailing list is for general (Simplified) Chinese discussion.)
— debian-devel@debian.or.jp

The more experienced Debian developers will gladly help you, if you ask properly after making your required
efforts.

Caution

@ Debian development is a moving target. Some information found on the web may
be outdated, incorrect, and non-applicable. Please use it carefully.

2.7 Archive situation

Please realize the situation of the Debian archive.
* Debian already has packages for most kinds of programs.

* The number of packages already in the Debian archive is several tens of times greater than that of active
maintainers.

 Unfortunately, some packages lack an appropriate level of attention by the maintainer.

Thus, contributions to packages already in the archive are far more appreciated (and more likely to receive
sponsorship for uploading) by other maintainers.

Tip

The wnpp-alert command from the devscripts package can check for installed
packages up for adoption or orphaned.

Tip

The how-can-i-help package can show opportunities for contributing to Debian

on packages installed locally.



https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

CHAPTER 2. PREREQUISITES 2.8. CONTRIBUTION APPROACHES

2.8 Contribution approaches

Here is pseudo-Python code for your contribution approaches to Debian with a program:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)
if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)
elif is_RFA(program): # Request for Adoption
adopt_it(program)
else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)
else:
leave_it(program)
else: # new packages
if not is_good_program(program):
give_up_packaging(program)
elif not is_distributable(program):
give_up_packaging(program)
else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)
else:
leave_it_to_ITPer(program)
else: # really new
if is_applicable_team(program):
join_team(program)
if is_DFSG(program) and is_DFSG(dependency(program)):
file ITP(program, area="main") # This is Debian
elif is_DFSG(program):
file _ITP(program, area="contrib") # This is not Debian
else: # non-DFSG
file ITP(program, area="non-free") # This is not Debian
package_it_and_close_ITP(program)

Here:
* For exist_in_debian(), and is_team_maintained(); check:

— the aptitude command
— Debian packages web page

— Teams

« For is_orphaned(), is_RFA(), and is_ITPed_by_others(); check:

The output of the wnpp-alert command.

Work-Needing and Prospective Packages

Debian Bug report logs: Bugs in pseudo-package wnpp in unstable

Debian Packages that Need Lovin’

Browse wnpp bugs based on debtags
+ Foris_good_program(), check:

— The program should be useful.
— The program should not introduce security and maintenance concerns to the Debian system.

— The program should be well documented and its code needs to be understandable (i.e. not obfuscated).



https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/

CHAPTER 2. PREREQUISITES 2.9. NOVICE CONTRIBUTOR AND MAINTAINER

— The program’s authors agree with the packaging and are amicable to Debian. 3
 Foris_it_ DFSG(), and is_its_dependency_DFSG(); check:
— Debian Free Software Guidelines (DFSG).

* For is_it_distributable(), check:
— The software must have a license and it should allow its distribution.

You either need to file an ITP or adopt a package to start working on it. See the “Debian Developer’s Refer-
ence”:

* 5.1. New packages.

* 5.9. Moving, removing, renaming, orphaning, adopting, and reintroducing packages.

2.9 Novice contributor and maintainer

The novice contributor and maintainer may wonder what to learn to start your contribution to Debian. Here are my
suggestions depending on your focus:

+ Packaging

— Basics of the POSIX shell and make.
— Some rudimentary knowledge of Perl and Python.

 Translation

— Basics of how the PO based translation system works.

* Documentation
— Basics of text markups (XML, ReST, Wiki, ...).

The novice contributor and maintainer may wonder where to start your contribution to Debian. Here are my
suggestions depending on your skills:

+ POSIX shell, Perl, and Python skills:
— Send patches to the Debian Installer.

— Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot, etc. mentioned
in this document.

« C and C++ skills:

— Send patches to the packages with the required and important priorities.

* Non-English skills:

— Send patches to the PO file of the Debian Installer.
— Send patches to the PO file of the packages with the required and important priorities.

* Documentation skills:

— Update contents on Debian Wiki.
— Send patches to the existing Debian Documentation.

These activities should give you good exposure to the other Debian people to establish your credibility.
The novice maintainer should avoid packaging programs with the high security exposure:
+ setuid or setgid program

* daemon program

+ program installed in the /sbin/ or /usr/sbin/ directories

When you gain more experience in packaging, you’ll be able to package such programs.

3This is not the absolute requirement. The hostile upstream may become a major resource drain for us all. The friendly upstream can be
consulted to solve any problems with the program.



https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip
https://wiki.debian.org/
https://www.debian.org/doc/

Chapter 3

Tool Setups

The build-essential package must be installed in the build environment.

The devscripts package should be installed in the maintainer environment.

Although this is not necessarily an absolute requirement, it is a good idea to install and set up all of the popular
set of packages mentioned in this chapter in the maintainer environment. This enables us to share the common
baseline working environment. . Please install the tools mentioned in the Overview of Debian Maintainer Tools in
the “Debian Developer’s Reference”, as needed, too.

Caution

date with the latest packages on the system. Debian development is a moving
target. Please make sure to read the pertinent documentation and update the
configuration as needed.

: Tool setups presented here are only meant as an example and may not be up-to-

3.1 Email address

Various Debian maintenance tools recognize your email address and name to use by the shell environment variables
$DEBEMAIL and $DEBFULLNAME.

Let’s setup these packages by adding the following lines to ~/.bashrc 1.

Add to the ~/.bashrc file

DEBEMAIL="your.email.address@example.org"
DEBFULLNAME="Firstname Lastname"
export DEBEMAIL DEBFULLNAME

3.2 mc

The mc command offers very easy ways to manage files. It can open the binary deb file to check its content by
pressing the Enter key over the binary deb file. It uses the dpkg-deb command as its back-end. Let’s set it up to
support easy chdir as follows.

Add to the ~/.bashrc file

# mc related

if [ -f /usr/lib/mc/mc.sh ]; then
. /usr/1lib/mc/mc.sh

fi

1This assumes you are using Bash as your login shell. If you use some other login shell such as Z shell, use their corresponding configuration
files instead of ~/.bashrc.


https://www.debian.org/doc/manuals/developers-reference/tools.html

CHAPTER 3. TOOL SETUPS 3.3. GIT

3.3 git

Nowadays, the git command is the essential tool to manage the source tree with history.
The global user configuration for the git command such as your name and email address can be set in ~/.gitconfig
as follows.

$ git config --global user.name "Name Surname"
$ git config --global user.email yourname@example.com

If you are too accustomed to the CVS or Subversion commands, you may wish to set several command aliases
as follows.

$ git config --global alias.ci "commit -a"
$ git config --global alias.co checkout

You can check your global configuration as follows.

$ git config --global --list

Tip

It is essential to use some GUI git tools like gitk or gitg to work effectively with
the history of the git repository.

3.4 quilt

The quilt command offers a basic method for recording modifications. For the Debian packaging, it should be
customized to record modifications in the debian/patches/ directory instead of its default patches/ directory.

In order to avoid changing the behavior of the quilt command itself, let’s create an alias dquilt for the Debian
packaging by adding the following lines to the ~/.bashrc file. The second line provides the same shell completion
feature of the quilt command to the dquilt command.

Add to the ~/.bashrc file

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $ _quilt_complete_opt dquilt

Then let’s create ~/.quiltrc-dpkg as follows.

d=.

while [ ! -d $d/debian -a ‘readlink -e $d° !'= / 1];
do d=$d/..; done

if [ -d $d/debian ] && [ -z $QUILT_PATCHES ]; then
# if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ' [ -d $d/debian/patches ]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and How To Survive With Many Patches or Introduction to Quilt on how to use the quilt command.
See Section 4.9 for example usages.

10


file:///usr/share/doc/quilt/quilt.html

CHAPTER 3. TOOL SETUPS 3.5. DEVSCRIPTS

3.5 devscripts

The debsign command, included in the devscripts package, is used to sign the Debian package with your private
GPG key.

The debuild command, included in the devscripts package, builds the binary package and checks it with the
lintian command. It is useful to have verbose outputs from the lintian command.

You can set these up in ~/.devscripts as follows.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command help
rebuilding of Debian packages without extraneous contents (see Section 5.17).
Currently, an RSA key with 4096 bits is a good idea. See Creating a new GPG key.

3.6 sbuild

The sbuild package provides a clean room (chroot) build environment. It offers this efficiently with the help of
schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date and comes
with full of useful features.

It can be customized to offer following features:

+ The schroot package to boost the chroot creation speed.
+ The lintian package to find bugs in the package.

+ The piuparts package to find bugs in the package.

The autopkgtest package to find bugs in the package.
+ The ccache package to boost the gcc speed. (optional)
+ The libeatmydatal package to boost the dpkg speed. (optional)
* The parallel make to boost the build speed. (optional)

Let’s get started by following https://wiki.debian.org/sbuild .

$ sudo apt install sbuild piuparts autopkgtest lintian
$ sudo usermod -a -G <your_user_name> sbuild

Reboot your system or execute command such as “kill -TERM -1” 2. Then login and check you are a member
of sbuild group using id command.
$ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Let’s create the configuration file ~/ . sbuildrc in line with recent Debian practice https://wiki.debian.org/-
SourceOnlyUpload as:

cat >~/.sbuildrc << 'EOF'
HAHHHBHABHHH B HAH B HH R B H AR B H AR H A HH A HH B R H AR AR R R AR
# PACKAGE BUILD RELATED (source-only-upload as default)

HH TR R R R T T R A A R

$distribution = 'unstable';
# -A

$build_arch_all = 1;

# -S

$build_source = 1;
# --source-only-changes
$source_only_changes = 1;

2Logout from your system via GUI menu may not work.

11


https://keyring.debian.org/creating-key.html
https://buildd.debian.org/
https://wiki.debian.org/sbuild
https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

CHAPTER 3. TOOL SETUPS 3.7. GIT-BUILDPACKAGE

# -V
$verbose = 1;

# POST-BUILD RELATED (turn off functionality by setting variables to 0)
HHAEGHBHA R RS HH ST AR SR H R A A AR B SR R R A R R R A SRR U A A R R R R
$run_lintian = 1;

$lintian_opts = ['-i', '-I'];

$run_piuparts = 1;

$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];

$run_autopkgtest = 1;

$autopkgtest_root_args = '';

$autopkgtest_opts = [ '--', 'schroot', '%r-%a-sbuild' ];

RABHHRHBHHBHBH R HBH R HBH AR HBH AR HBH R HBH AR HBH AR HBH BB H BB B R R B R BB R 1
# PERL MAGIC

HHBHHRHBHHHH B HHH BB B R R R R R R R R R H R R
1;

EOF

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corresponding
variables,

Warning

@ The optional customization may cause negative effects. In case of doubts, dis-
able them.

Note

The parallel make may fail for some existing packages and may make the build

log difficult to read.

3.7 git-buildpackage

You may wish to set several global configurations in ~/.gbp.conf

# Configuration file for "gbp <command>"

[DEFAULT]

# the default build command:

builder = sbuild

# use pristine-tar:

pristine-tar = True

# Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

Tip

The gbp command is the alias of the git-buildpackage command.

12



CHAPTER 3. TOOL SETUPS 3.8. HITP PROXY

3.8 HTTP proxy

You should set up a local HTTP caching proxy to save the bandwidth for the Debian package repository access.
There are several choices:

* Specialized HTTP caching proxy using the apt-cacher-ng package.
» Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install either
auto-apt-proxy or squid-deb-proxy-client package to everywhere.
3.9 Private Debian repository

You can set up a private Debian package repository with the reprepro package.

3.10 Virtual machines

For testing GUI application, it is good idea to have virtual machines. Install virt-manager and gemu-kvm,
Use of chroot and virtual machines allow us not to update the whole host PC to the latest unstable.

3.11 Local network with virtual machines

In order to access virtual machines easily over the local network, setting up multicast DNS service discovery
infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local for SSH to
access each other.

13



Chapter 4

Simple Example

There is an old Latin saying: “Longum iter est per praecepta, breve et efficax per exempla” (“It’s a long way
by the rules, but short and efficient with examples”).

4.1 Packaging tarball

Here is an example of creating a simple Debian package from a simple C source using the Makefile as its build
system.

Let’s assume this upstream tarball to be debhello-0.0.tar.gz.

This type of source is meant to be installed as a non-system file as:

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0

$ make

$ make install

Debian packaging requires changing this “make install” process to install files to the target system image
location instead of the normal location under /usr/local.

Note

Examples of creating a Debian package from other complicated build systems
are described in Chapter 8.

4.2 Big picture

The big picture for building a single non-native Debian package from the upstream tarball debhello-0.0.tar.gz can
be summarized as:

+ The maintainer obtains the upstream tarball debhello-0.0.tar.gz and untars its contents to the debhello-0.0
directory.

* The debmake command debianizes the upstream source tree by adding template files only in the debian
directory.

— The debhello_0.0.orig.tar.gz symlink is created pointing to the debhello-0.0.tar.gz file.

— The maintainer customizes template files.
 The debuild command builds the binary package from the debianized source tree.
— debhello-0.0-1.debian.tar.xz is created containing the debian directory.

Big picture of package building

14



CHAPTER 4. SIMPLE EXAMPLE 4.3. WHAT IS DEBMAKE?

$ tar -xzmf debhello-0.0.tar.gz
$ cd debhello-0.0
$ debmake
. manual customization
$ debuild

Tip

The debuild command in this and following examples may be substituted by

equivalent commands such as the sbuild command.

Tip

If the upstream tarball in the .tar.xz format is available, use it instead of the one
) in the .tar.gz and .tar.bz2 formats. The xz compression format offers the better

compression than the gzip and bzip2 compressions.

4.3 What is debmake?

The debmake command is the helper script for the Debian packaging.
« It always sets most of the obvious option states and values to reasonable defaults.
« It generates the upstream tarball and its required symlink if they are missing.
« It doesn’t overwrite the existing configuration files in the debian/ directory.
« It supports the multiarch package.
« It creates good template files such as the debian/copyright file compliant with DEP-5.

These features make Debian packaging with debmake simple and modern.
In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-or-less a
demonstration session generator for tutorial purpose.

Note

Many packages are packaged using only a text editor while imitating how other

similar packages are packaged and consulting how the Debian policy requires

us to do. This seems to me the most popular method for the real-life packaging
activity.

The debmake command isn’t the only helper script to make a Debian package. If you are interested alternative
packaging helper tools, please see:

* Debian wiki: AutomaticPackagingTools — Extensive comparison of packaging helper scripts

* Debian wiki: CopyrightReviewTools — Extensive comparison of copyright review helper scripts

15


https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

CHAPTER 4. SIMPLE EXAMPLE 4.4. WHAT IS DEBUILD?

4.4 What is debuild?

Here is a summary of commands similar to the debuild command.

 The debian/rules file defines how the Debian binary package is built.

 The dpkg-buildpackage command is the official command to build the Debian binary package. For normal
binary build, it executes roughly:

“dpkg-source --before-build” (apply Debian patches, unless they are already applied)
“fakeroot debian/rules clean”

“dpkg-source --build” (build the Debian source package)

“fakeroot debian/rules build”

“fakeroot debian/rules binary”

“dpkg-genbuildinfo” (generate a *.buildinfo file)

“dpkg-genchanges” (generate a *.changes file)

“fakeroot debian/rules clean”

“dpkg-source --after-build” (unapply Debian patches, if they are applied during --before-build)
“debsign” (sign the *.dsc and *.changes files)

* If you followed Section 3.5 to set the -us and -uc options, this step is skipped and you must run
the debsign command manually.

* The debuild command is a wrapper script of the dpkg-buildpackage command to build the Debian binary
package under the proper environment variables.

+ The sbuild command is a wrapper script to build the Debian binary package under the proper chroot envi-
ronment with the proper environment variables.

Note

See dpkg-buildpackage(1) for exact details.

4.5 Step 1: Get the upstream source

Let’s get the upstream source.
Download debhello-0.0.tar.gz

$ wget http://www.example.org/download/debhello-0.0.tar.gz

$ tar -xzf debhello-0.0.tar.gz

$ tree

+-- debhello-0.0

| +-- LICENSE
| +-- Makefile
| +-- src

+-- hello.c

+-- debhello-0.0.tar.gz

2 directories, 4 files

Here, the C source hello.c is a very simple one.

hello.c

16



CHAPTER 4. SIMPLE EXAMPLE 4.6. STEP 2: GENERATE TEMPLATE FILES ...

$ cat debhello-0.0/src/hello.c
#include <stdio.h>

int

main()

{
printf("Hello, world!\n");
return 0;

}

Here, the Makefile supports GNU Coding Standards and FHS. Notably:

* build binaries honoring $(CPPFLAGS), $(CFLAGS), $(LDFLAGS), etc.
« install files with $(DESTDIR) defined to the target system image

+ install files with $(prefix) defined, which can be overridden to be /usr
Makefile

$ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \
fold -s -w 70 | \
sed -e 's/AN/# /'
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -0 $@ $~

install: src/hello
install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Note

The echo of the $(CFLAGS) variable is used to verify the proper setting of the
build flag in the following example.

4.6 Step 2: Generate template files with debmake

Tip

If the debmake command is invoked with the -T option, more verbose comments
are generated for the template files.

17


https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CHAPTER 4. SIMPLE EXAMPLE 4.6. STEP 2: GENERATE TEMPLATE FILES ...

The output from the debmake command is very verbose and explains what it does as follows.

$ cd debhello-0.0
$ debmake
. set parameters

package_dir /usr/1lib/python3/dist-packages

base_path = /usr
base_1lib_path = /usr/1lib/debmake
base_share_path = /usr/share/debmake

sanity check of parameters

pkg="debhello", ver="0.0", rev="1"

*** start packaging in "debhello-0.0". ***

provide debhello_0.0.orig.tar.gz for non-native Debian package
pwd = "/path/to"

: $ In -sf debhello-0.0.tar.gz debhello_0.0.0rig.tar.gz

pwd = "/path/to/debhello-0.0"

parse binary package settings:

binary package=debhello Type=bin / Arch=any M-A=foreign

: analyze the source tree

build_type = make

scan source for copyright+license text and file extensions
: 100 %, ext = ¢

: check_all_licenses

: check_all_licenses completed for 2 files.
bunch_all_licenses

: format_all_licenses

: make debian/* template files

single binary package

: debmake -x "1" .

: creating => debian/control

: creating => debian/copyright

substituting => /usr/share/debmake/extra®/changelog

: creating => debian/changelog

substituting => /usr/share/debmake/extra®/rules

: creating => debian/rules

substituting => /usr/share/debmake/extral/README.Debian
: creating => debian/README.Debian

substituting => /usr/share/debmake/extral/watch

: creating => debian/watch

substituting => /usr/share/debmake/extralsource/format

: creating => debian/source/format

substituting => /usr/share/debmake/extraltests/control

: creating => debian/source/control

substituting => /usr/share/debmake/extralupstream/metadata
: creating => debian/upstream/metadata

substituting => /usr/share/debmake/extraltests/control

: creating => debian/tests/control

substituting => /usr/share/debmake/extralpatches/series
: creating => debian/patches/series

substituting => /usr/share/debmake/extralsourcex/local-options
: creating => debian/source/local-options

substituting => /usr/share/debmake/extralsourcex/options
: creating => debian/source/options

substituting => /usr/share/debmake/extralsourcex/patch-header
: creating => debian/source/patch-header

run "debmake -x2" to get more template files

: $ wrap-and-sort

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHMHHHHHMHHMHHMHEMHHKMHHMHHHH

The debmake command generates all these template files based on command line options. Since no options
are specified, the debmake command chooses reasonable default values for you:

+ The source package name: debhello

18



CHAPTER 4. SIMPLE EXAMPLE 4.6. STEP 2: GENERATE TEMPLATE FILES ...

* The upstream version: 0.0

+ The binary package name: debhello

+ The Debian revision: 1

+ The package type: bin (the ELF binary executable package)
+ The -x option: -x1 (default for the single binary package)

Let’s inspect generated template files.
The source tree after the basic debmake execution.

$ cd
$ tree

+-- debhello-0.0

+-- LICENSE

+-- Makefile

+-- debian

[ +-- README.Debian
+-- changelog
+-- control

+-- copyright
+-- patches

| +-- series
+-- rules

+-- source

| +-- control
| +-- format

| +-- local-options
| +-- options

| +-- patch-header
+-- tests

| +-- control

+-- upstream

| +-- metadata

+-- watch

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
oo o

| +-- hello.c
+-- debhello-0.0.tar.gz
+-- debhello_0.0.o0rig.tar.gz -> debhello-0.0.tar.gz

7 directories, 19 files

The debian/rules file is the build script provided by the package maintainer. Here is its template file generated
by the debmake command.
debian/rules (template file):

$ cat debhello-0.0/debian/rules
#!/usr/bin/make -f
# You must remove unused comment lines for the released package.
#export DH_VERBOSE = 1
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
#export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%

dh $@

#override_dh_auto_install:
# dh_auto_install -- prefix=/usr

#override_dh_install:
# dh_install --list-missing -X.pyc -X.pyo

19



CHAPTER 4. SIMPLE EXAMPLE 4.6. STEP 2: GENERATE TEMPLATE FILES ...

This is essentially the standard debian/rules file with the dh command. (There are some commented out
contents for you to customize it.)

The debian/control file provides the main meta data for the Debian package. Here is its template file generated
by the debmake command.

debian/control (template file):

$ cat debhello-0.0/debian/control

Source: debhello

Section: unknown

Priority: optional

Maintainer: "Firstname Lastname" <email.address@example.org>
Build-Depends: debhelper-compat (= 13)

Standards-Version: 4.5.1

Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends: ${misc:Depends}, ${shlibs:Depends}
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

Warning

@ If you leave “Section: unknown” in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets “Architecture: any” and “Multi-
Arch: foreign”. Also, it sets required substvar parameters as “Depends: ${shlibs:Depends}, ${misc:Depends}”.
These are explained in Chapter 5.

Note

Please note this debian/control file uses the RFC-822 style as documented in
% 5.2 Source package control files — debian/control of the “Debian Policy Manual”.

The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package. Here is its template
file generated by the debmake command.
debian/copyright (template file):

$ cat debhello-0.0/debian/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello

Upstream-Contact: <preferred name and address to reach the upstream project>
Source: <url://example.com>
#
# Please double check copyright with the licensecheck(1) command.

Files: Makefile

src/hello.c
Copyright: _ NO_COPYRIGHT_NOR_LICENSE_
License: _ NO_COPYRIGHT_NOR_LICENSE_ _

# Files marked as NO_LICENSE_TEXT_FOUND may be covered by the following

20


https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

CHAPTER 4. SIMPLE EXAMPLE 4.7. STEP 3: MODIFICATION TO THE ...

# license/copyright files.

# License file: LICENSE
License:

All files in this archive are licensed under the MIT License as below.
Copyright 2015 Osamu Aoki <osamu@debian.org>

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.7 Step 3: Modification to the template files

Some manual modification is required to make the proper Debian package as a maintainer.

In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile should
be overridden to be /usr. This can be accommodated by the following the debian/rules file with the over-
ride_dh_auto_install target setting “prefix=/usr”.

debian/rules (maintainer version):

$ vim debhello-0.0/debian/rules
hack, hack, hack,

$ cat debhello-0.0/debian/rules
#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed

% :
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Exporting the DH_VERBOSE environment variable in the debian/rules file as above forces the debhelper
tool to make a fine grained build report.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the “FEA-
TURE AREAS/ENVIRONMENT” in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning “W: debhello: hardening-no-relro
usr/bin/hello”. This is not really needed for this example but should be harmless. The lintian tool seems to produce a false positive warning
for this case which has no linked library.

21



CHAPTER 4. SIMPLE EXAMPLE 4.7. STEP 3: MODIFICATION TO THE ...

Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library is
actually needed. 2

The dh_auto_install command for the Makefile based build system essentially runs “$(MAKE) install DEST-
DIR=debian/debhello”. The creation of this everride_dh_auto_install target changes its behavior to “$(MAKE)
install DESTDIR=debian/debhello prefix=/usr”.

Here are the maintainer versions of the debian/control and debian/copyright files.

debian/control (maintainer version):

$ vim debhello-0.0/debian/control

hack, hack, hack,
$ cat debhello-0.0/debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.5.1
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: any

Multi-Arch: foreign

Depends: ${misc:Depends}, ${shlibs:Depends}

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (maintainer version):

$ vim debhello-0.0/debian/copyright
hack, hack, hack,
$ cat debhello-0.0/debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

There are several other template files under the debian/ directory. These also need to be updated.
Template files under debian/. (v=0.0):

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really needed for
this simple example but should be harmless.

22



CHAPTER 4. SIMPLE EXAMPLE

4.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

$ tree debhello-0.0/debian

debhello-0.0/debian
+-- README.Debian
+-- changelog

+-- control

+-- copyright

+-- patches

| +-- series

+-- rules

+-- source

| +-- control

| +-- format

| +-- local-options
| +-- options

| +-- patch-header
+-- tests
I

+

+-- control
-- upstream
| +-- metadata
+-- watch

4 directories, 14 files

Tip

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

4.8 Step 4: Building package with debuild

You can create a non-native Debian package using the debuild command or its equivalents (see Section 4.4) in this
source tree. The command output is very verbose and explains what it does as follows.

$ cd debhello-0.0
$ debuild

dpkg-buildpackage -us -uc -ui -i -i

debian/rules clean
dh clean

debian/rules binary
dh binary

dh_update_autotools_config

dh_autoreconf
dh_auto_configure

install -d /path/to/debhello-0.0/debian/.debhelper/generated/_source/...

dh_auto_build

make -j12 "INSTALL=install --strip-program=true"
make[1]: Entering directory '/path/to/debhello-0.0'

# CFLAGS=-g -02

# -ffile-prefix-map=/home/osamu/src/public/debmake-doc/debmake-doc/examp

Now running lintian -i -I --show-overrides debhello_0.0-1_amd64.changes ...

=Z2==z=

Renamed from: binary-without-manpage

: debhello: readme-debian-contains-debmake-template

23



CHAPTER 4. SIMPLE EXAMPLE 4.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPEND
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later examples
(see Chapter 8). Let’s move on for now.

Let’s inspect the result.

The generated files of debhello version 0.0 by the debuild command:

$cd ..
$ tree -FL 1

+-- debhello-0.0/

+-- debhello-0.0.tar.gz

+-- debhello-dbgsym_0.0-1_amd64.deb

+-- debhello_0.0-1.debian.tar.xz

+-- debhello_0.0-1.dsc

+-- debhello_0.0-1_amd64.build

+-- debhello_0.0-1_amd64.buildinfo

+-- debhello_0.0-1_amd64.changes

+-- debhello_0.0-1_amd64.deb

+-- debhello_0.0.o0rig.tar.gz -> debhello-0.0.tar.gz

1 directory, 9 files
You see all the generated files.
* The debhello_0.0.orig.tar.gz is a symlink to the upstream tarball.
* The debhello_0.0-1.debian.tar.xz contains the maintainer generated contents.
 The debhello_0.0-1.dsc is the meta data file for the Debian source package.
* The debhello_0.0-1_amd64.deb is the Debian binary package.
* The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See Section 5.19.1.
 The debhello_0.0-1_amd64.build file is the build log file.
 The debhello_0.0-1_amdé64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).
+ The debhello_0.0-1_amd64.changes is the meta data file for the Debian binary package.

The debhello_0.0-1.debian.tar.xz contains the Debian changes to the upstream source as follows.
The compressed archive contents of debhello_0.0-1.debian.tar.xz:

$ tar -tzf debhello-0.0.tar.gz
debhello-0.0/

debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/LICENSE
debhello-0.0/Makefile

$ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/

debian/README.Debian
debian/changelog

debian/control

debian/copyright
debian/patches/
debian/patches/series
debian/rules

debian/source/
debian/source/control
debian/source/format
debian/source/options
debian/source/patch-header

24



CHAPTER 4. SIMPLE EXAMPLE

4.8. STEP 4: BUILDING PACKAGE WITH DEBUILD

debian/tests/

debian/tests/control

debian/upstream/

debian/upstream/metadata

debian/watch

The debhello_0.0-1_amd64.deb contains the binary files to be installed to the target system.
The debhello-debsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the target system..
The binary package contents of all binary packages:

$ dpkg -c
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x
drwxr-xr-x
TrwXrwxrwx

$ dpkg -c
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rWXr-Xr-x
drwxr-xr-x
drwxr-xr-x

drwxr-xr-x
-rw-r--r--
-rw-r--r--
-rw-r--r--

debhello- dbgsym 0.0-1_amd64.deb

root/root .

root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...

root/root

./

./usr/

./usr/1lib/

./usr/1ib/debug/

./usr/1ib/debug/.build-id/
./usr/1ib/debug/.build-id/be/
./usr/1ib/debug/.build-id/be/11292eded3fc22396a0b62. ..
./usr/share/

./usr/share/doc/

./usr/share/doc/debhello-dbgsym -> debhello

debhello_ 0 0 1_amd64.deb

root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...
root/root ...

./

./usr/

./usr/bin/

./usr/bin/hello

./usr/share/

./usr/share/doc/

./usr/share/doc/debhello/
./usr/share/doc/debhello/README.Debian
./usr/share/doc/debhello/changelog.Debian.gz
./usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

$ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

debhello (= 0.0-1)

$ dpkg -f debhello_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

libc6 (>= 2.2.5)

Caution

® Many more details need to be addressed before uploading the package to the
Debian archive.

If manual adjustments of auto-generated configuration files by the debmake com-
mand are skipped, the generated binary package may lack meaningful package

description and some of the policy requirements may be missed. This sloppy
package functions well under the dpkg command, and may be good enough for
your local deployment.

25



CHAPTER 4. SIMPLE EXAMPLE 4.9. STEP 3 (ALTERNATIVE): MODIFICATION ...

4.9 Step 3 (alternative): Modification to the upstream source

The above example did not touch the upstream source to make the proper Debian package.

An alternative approach as the maintainer is to change the upstream source by modifying the upstream Makefile
to set the $(prefix) value to /usr.

The packaging is practically the same as the above step-by-step example except for two points in Section 4.7:

+ Store the maintainer modifications to the upstream source as the corresponding patch files in the debian/-
patches/ directory and list their filenames in the debian/patches/series file as indicated in Section 5.10.
There are several ways to generate patch files. A few examples are given in these sections:

— Section 4.9.1
— Section 4.9.2
— Section 4.9.3

+ The maintainer modification to the debian/rules file doesn’t have the override_dh_auto_install target as
follows:

debian/rules (alternative maintainer version):

$ cd debhello-0.0
$ vim debian/rules
. hack, hack, hack,

$ cat debian/rules
#!1/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%:

dh $@

This alternative approach to Debian packaging using a series of patch files may be less robust for future upstream
changes but more flexible coping with the difficult upstream source. (See Section 7.13.)

Note

For this particular packaging case, the above Section 4.7 using the debian/rules
% file is the better approach. But let's keep on with this approach as a leaning

process.

Tip

For more complicated packaging cases, both Section 4.7 and Section 4.9 ap-

proaches need to be deployed.

4.9.1 Patch by diff -u
Here is an example to create 000-prefix-usr.patch by the diff command.

$ cp -a debhello-0.0 debhello-0.0.0rig
$ vim debhello-0.0/Makefile
. hack, hack, hack,
$ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
$ cat 000-prefix-usr.patch

26



CHAPTER 4. SIMPLE EXAMPLE 4.9. STEP 3 (ALTERNATIVE): MODIFICATION ...

diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile

--- debhello-0.0.0orig/Makefile 2021-07-02 16:26:38.734722687 +0900
+++ debhello-0.0/Makefile 2021-07-02 16:26:38.802723496 +0900
@@ '114 +1I4 @@

-prefix = /usr/local

+prefix = /usr

all: src/hello

$ rm -rf debhello-0.0
$ mv -f debhello-0.0.0orig debhello-0.0

Please note that the upstream source tree is restored to the original state and the patch file is available as 000-
prefix-usr.patch.
This 000-prefix-usr.patch is edited to be DEP-3 conformant and moved to the right location as below.

cd debhello-0.0

echo '000-prefix-usr.patch' >debian/patches/series

vim ../000-prefix-usr.patch

. hack, hack, hack,

$ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr.patch
$ cat debian/patches/000-prefix-usr.patch

From: Osamu Aoki <osamu@debian.org>

Description: set prefix=/usr patch

diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile

--- debhello-0.0.orig/Makefile

+++ debhello-0.0/Makefile

@@ -1,4 +1,4 @@

-prefix = /usr/local

+prefix = /usr

B B

all: src/hello

4.9.2 Patch by dquilt

Here is an example to create 000-prefix-usr.patch by the dquilt command which is a simple wrapper of the quilt
program. The syntax and function of the dquilt command is the same as the quilt(1) command, except for the fact
that the patch is stored in the debian/patches/ directory.

$ cd debhello-0.0
$ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
$ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
hack, hack, hack,
$ head -1 Makefile
prefix = /usr
$ dquilt refresh
Refreshed patch debian/patches/000-prefix-usr.patch
$ dquilt header -e --dep3
. edit the DEP-3 patch header with editor
$ tree -a

+-- .pcC

| +-- .quilt_patches

| +-- .quilt_series

| +-- .version

| +-- 000-prefix-usr.patch
| | +-- .timestamp

| [ +-- Makefile

| +-- applied-patches

+-- LICENSE

+-- Makefile

27


https://dep-team.pages.debian.net/deps/dep3/

CHAPTER 4. SIMPLE EXAMPLE 4.9. STEP 3 (ALTERNATIVE): MODIFICATION ...

+-- debian

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- patches

[ +-- 000-prefix-usr.patch
[ +-- series

+-- rules

+-- source

[ +-- control

[ +-- format

[ +-- local-options
[ +-- options

[ +-- patch-header
+-- tests

[ +-- control

+-- upstream

[ +-- metadata

+-- watch

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+--

+-- hello.c

8 directories, 24 files

$ cat debian/patches/series
000-prefix-usr.patch

$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile

@@ '114 +1I4 @@

-prefix = /usr/local

+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state. The dpkg-source
command invoked by the Debian packaging procedure in Section 4.8, understands the patch application state
recorded by the dquilt program in the .pc/ directory. As long as all the changes are committed by the dquilt
command, the Debian source package can be built from the modified source tree.

Note

If the .pcl directory is missing, the dpkg-source command assumes that no patch

was applied. That's why the more primitive patch generation methods like in
Section 4.9.1 without generating the .pcl/ directory require the upstream source
tree to be restored.

4.9.3 Patch by dpkg-source --commit

Here is an example to create 000-prefix-usr.patch by the “dpkg-source --commit” command.
Let’s edit the upstream source.

$ cd debhello-0.0
$ vim Makefile

hack, hack, hack,
$ head -n1 Makefile
prefix = /usr

28



CHAPTER 4. SIMPLE EXAMPLE 4.9. STEP 3 (ALTERNATIVE): MODIFICATION ...

Let’s commit it.

$ dpkg-source --commit . 000-prefix-usr.patch
. editor to edit the DEP-3 patch header

Let’s see the result.

$ cat debian/patches/series
000-prefix-usr.patch

$ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile

--- debhello-0.0.0orig/Makefile
+++ debhello-0.0/Makefile

@@ '114 +1I4 @@

-prefix = /usr/local

+prefix = /usr

all: src/hello

$ tree

a

4o
| +-- .quilt_patches

| +-- .quilt_series

| +-- .version

| +-- 000-prefix-usr.patch

| [ +-- .timestamp

| [ +-- Makefile

| +-- applied-patches

+-- LICENSE

+-- Makefile

+-- debian

| +-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- patches

| +-- 000-prefix-usr.patch
[ +-- series

+-- rules

+-- source

[ +-- control

| +-- format

[ +-- local-options
[ +-- options

| +-- patch-header
+-- tests
|

+--

+-- control
upstream
[ +-- metadata
+-- watch

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+--

src
+-- hello.c

8 directories, 24 files

Here, the dpkg-source command performs exactly the same as what the sequences of the dquilt command did
in Section 4.9.2.

29



Chapter 5

Basics

A broad overview is presented here for the basic rules of Debian packaging focusing on the non-native Debian
package in the “3.0 (quilt)” format.

Note

% Some details are intentionally skipped for clarity. Please read the manpages
of the dpkg-source(1), dpkg-buildpackage(1), dpkg(1), dpkg-deb(1), deb(5),

etc.

The Debian source package is a set of input files used to build the Debian binary package and is not a single
file.

The Debian binary package is a special archive file which holds a set of installable binary data with its associated
information.

A single Debian source package may generate multiple Debian binary packages defined in the debian/control

file.
The non-native Debian package in the “3.0 (quilt)” format is the most normal Debian source package format.

Note

There are many wrapper scripts. Use them to streamline your workflow but make
sure to understand the basics of their internals.

5.1 Packaging workflow

The Debian packaging workflow to create a Debian binary package involves generating several specifically named
files (see Section 5.4) as defined in the “Debian Policy Manual”.
The oversimplified method for the Debian packaging workflow can be summarized in 10 steps as follows.

1. The upstream tarball is downloaded as the package-version.tar.gz file.
2. The upstream tarball is untarred to create many files under the package-version/ directory.

3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.gz.

* the character separating package and version is changed from - (hyphen) to _ (underscore)

* .orig is added in the file extension.

4. The Debian package specification files are added to the upstream source under the package-version/debian/
directory.

* Required specification files under the debian/ directory:

30



CHAPTER 5. BASICS 5.1. PACKAGING WORKFLOW

debian/rules The executable script for building the Debian package (see Section 5.6)

debian/control The package configuration file containing the source package name, the source build
dependencies, the binary package name, the binary dependencies, etc. (see Section 5.7)

debian/changelog The Debian package history file defining the upstream package version and the
Debian revision in its first line (see Section 5.8)

debian/copyright The copyright and license summary (see Section 5.9)
* Optional specification files under the debian/* (see Section 5.13):
* The debmake command invoked in the package-version/ directory provides the initial set of these
template configuration files.
— Required specification files are generated even with the -x0 option.
— The debmake command does not overwrite any existing configuration files.

* These files must be manually edited to their perfection according to the “Debian Policy Manual” and
“Debian Developer’s Reference”.

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in the package-
version/ directory to make the Debian source and binary packages by invoking the debian/rules script.

* The current directory is set as: $(CURDIR)=/path/to/package-version/
* Create the Debian source package in the “3.0 (quilt)” format using dpkg-source(1)
— package_version.orig.tar.gz (copy or symlink of package-version.tar.gz)

— package_version-revision.debian.tar.xz (tarball of package-version/debian/*)
— package_version-revision.dsc
* Build the source using “debian/rules build” into $(DESTDIR)
— DESTDIR=debian/binarypackage/ (single binary package)
— DESTDIR=debian/tmp/ (multi binary package)
* Create the Debian binary package using dpkg-deb(1), dpkg-genbuildinfo(1), and dpkg-genchanges(1).
— binarypackage_version-revision_arch.deb
— ... (There may be multiple Debian binary package files.)
— package_version-revision_arch.changes
— package_version-revision_arch.buildinfo

6. Check the quality of the Debian package with the lintian command. (recommended)

* Follow the rejection guidelines from ftp-master.

— REJECT-FAQ
— NEW checklist
— Lintian Autorejects (lintian tag list)

7. Test the goodness of the generated Debian binary package manually by installing it and running its programs.
8. After confirming the goodness, prepare files for the normal source-only upload to the Debian archive.

9. Sign the package_version-revision.dsc and *package_version-revision’_*source.changes* files with the deb-
sign command using your private GPG key.

10. Upload the set of the Debian source package files with the dput command to the Debian archive.

Test building and confirming of the binary package goodness as above is the moral obligation as a diligent
Debian developer but there is no physical barrier for people to skip such operations at this moment for the source-
only upload.

Under some exceptional situation such as NEW uploads, uploads to the Debian archive may need to include De-
bian binary package files. For such situation, sign package_version-revision_arch.changes instead of ’package_version-
revision’_*source.changes* in the step 9, and upload the set of the Debian source and binary package files in the
step 10.

Here, please replace each part of the filename as:

31


https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

CHAPTER 5. BASICS 5.2. HISTORICAL PERSPECTIVE OF DEBIAN ...

+ the package part with the Debian source package name

+ the binarypackage part with the Debian binary package name
+ the version part with the upstream version

+ the revision part with the Debian revision

+ the arch part with the package architecture

See also Source-only uploads.

Tip

Many patch management and VCS usage strategies for the Debian packaging

are practiced. You don’t need to use all of them.

Tip

There is very extensive documentation in Chapter 6. Best Packaging Practices

in the “Debian Developer’s Reference”. Please read it.

5.1.1 The debhelper package

Although a Debian package can be made by writing a debian/rules script without using the debhelper package, it
is impractical to do so. There are too many modern “Policy” required features to be addressed, such as application
of the proper file permissions, use of the proper architecture dependent library installation path, insertion of the
installation hook scripts, generation of the debug symbol package, generation of package dependency information,
generation of the package information files, application of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow and
reduce the burden of package maintainers. When properly used, they will help packagers handle and implement
“Policy” required features automatically.

The modern Debian packaging workflow can be organized into a simple modular workflow by:

+ using the dh command to invoke many utility scripts automatically from the debhelper package, and
+ configuring their behavior with declarative configuration files in the debian/ directory.

You should almost always use debhelper as your package’s build dependency. This document also assumes
that you are using a fairly contemporary version of debhelper to handle packaging works in the following contents.

5.2 Historical perspective of Debian packaging practices

Let me oversimplify historical perspective of Debian packaging practices.
Debian was started in 1990s when upstream packages were available from public FTP sites such as Sunsite. In
those early days, Debian packaging used dpkg-source currently known as "Format: 1.0”:

+ Upstream released packages in tar.gz format. They were obtained from some FTP sites.
+ Debian applied “one big patch” as its source distribution and made its binary distribution form it.

* Many different approaches were adopted by different Debian developers to manage topic patches with custom
scripts within the ”one big patch”. — Chaos!

In order to address issues of old dpkg-source ’Format: 1.0”, new dpkg-source”’Format: 3.0 (quilt)”
was invented around 2008:

32


https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite

CHAPTER 5. BASICS 5.3. FUTURE PERSPECTIVE ON DEBIAN ...

Upstream released packages in tar.gz/tar.bz2/tar.xz format optionally with signature files. They were obtained
from some HTTP sites.

Most Debian developers adopted patch queue mechanism of ’Format: 3.0 (quilt)” to manage topic
patches and made Debian packages while keeping files outside of debian/ directory untouched.

VCS, especially git, became popular and most Debian developers and started to record this packaging practice
in gbp-buildpackage(1) style.

The gbp-buildpackage(1) workflow records the exact same content of the upstream tarball to VCS for
source files outside of debian/ directory (= patch-unapplied).

The use of Git repositories to distribute upstream packages with signed tags (supported feature since 2011)
became very popular.

The tarball centric gbp-buildpackage(1) workflow to record changes to VCS was cumbersome for some
Debian developers and dgit(1) was invented in 2013.

The Gitcentricdgit-maint-debrebase(7)anddgit-maint-merge(7) workflows to record changes
to VCS are gaining popularity among these Debian developers.

Source files recorded to VCSby dgit-maint-debrebase(7)andgit-maint -merge(7) are modified
upstream source files (= patch-applied).

Uploaded source packages by dgit-maint-debrebase(7) and git-maint-merge(7) workflows
still use dpkg-source "Format: 3.0 (quilt)”.

Debian also enforced the source-only upload when developing Debian/11 Bullseye (released in 2021).

In this tutorial, mostly simple tarball based dpkg-source "Format: 3.0 (quilt)” examples are presented
as an introductory purpose.

Please assess these VCS usage approaches by yourself later to decide which one to deploy as your preferred

one.

Please also read Notes on Debian by Russ Allbery which have best practices such as Using Git for Debian
Packaging.

5.3

Future perspective on Debian packaging practices

Please look around to understand how Debian packaging practices are evolving and follow the current general
trends if possible.

DEP - Debian Enhancement Proposals

— Debian Enhancement Proposals (or DEPs, for short) offer a device to organize discussions about various
kinds of enhancements in the Debian project, reflect their current status and, in particular, archive their
outcomes.

Debian Trends
— This page provides some historical perspective about how those practices evolved.
Debian git packaging maintainer branch formats and workflows

— Nice packaging summary by the latest dgit tool providers.

You can also search entire Debian source code by yourself, too.

» Debian Sources — code search tool

— Debian Code Search — wiki page describing its usage

* Debian Code Search — another code search tool

33


https://www.eyrie.org/~eagle/notes/debian/
http://www.eyrie.org/~eagle/notes/debian/git.html
http://www.eyrie.org/~eagle/notes/debian/git.html
https://dep-team.pages.debian.net/
https://trends.debian.net/
https://wiki.debian.org/GitPackagingSurvey
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/

CHAPTER 5. BASICS 5.4. PACKAGE NAME AND VERSION

5.4 Package name and version

If the upstream source comes as hello-0.9.12.tar.gz, you can take hello as the upstream source package name and
0.9.12 as the upstream version.

debmake is meant to provide template files for the package maintainer to work on. Comment lines started by
# contain the tutorial text. You must remove or edit such comment lines before uploading to the Debian archive.

The license extraction and assignment process involves a lot of heuristics; it may fail in some cases. It is highly
recommended to use other tools such as licensecheck from the devscripts package in conjunction with debmake.

There are some limitations for what characters may be used as a part of the Debian package. The most no-
table limitation is the prohibition of uppercase letters in the package name. Here is a summary as a set of regular
expressions:

+ Upstream package name (-p): [-+.a-z0-9]{2,}
+ Binary package name (-b): [-+.a-z0-9]{2,}

+ Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*
+ Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in Chapter 5 - Control files and their fields in the “Debian Policy Manual”.

debmake assumes relatively simple packaging cases. So all programs related to the interpreter are assumed to
be ”Architecture: all”. This is not always true.

You must adjust the package name and upstream version accordingly for the Debian packaging.

In order to manage the package name and version information effectively under popular tools such as the
aptitude command, it is a good idea to keep the length of package name to be equal or less than 30 characters; and
the total length of version and revision to be equal or less than 14 characters. 1

In order to avoid name collisions, the user visible binary package name should not be chosen from any generic
words.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date such as
11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to remove them from
the upstream version. Such information can be recorded in the debian/changelog file. If you need to invent a
version string, use the YYYYMMDD format such as 20110429 as upstream version. This ensures that the dpkg
command interprets later versions correctly as upgrades. If you need to ensure a smooth transition to a normal
version scheme such as 0.1 in the future, use the 0~YYMMDD format such as 0~110429 as upstream version,
instead.

Version strings can be compared using the dpkg command as follows.

$ dpkg --compare-versions verl op ver2
The version comparison rule can be summarized as:
* Strings are compared from the head to the tail.
* Letters are larger than digits.
* Numbers are compared as integers.
* Letters are compared in ASCII code order.
There are special rules for period (.), plus (+), and tilde (~) characters, as follows.

0.0 < 0.5<0.10 < 0.99 <1 <1.0~rcl <1.0 < 1.0+b1 < 1.0+nmul < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.gz as the pre-release
of hello-0.9.12.tar.gz. You can ensure the Debian package upgrade to work properly by renaming the upstream
source to hello-0.9.12~rc99.tar.gz.

1For more than 90% of packages, the package name is equal or less than 24 characters; the upstream version is equal or less than 10
characters and the Debian revision is equal or less than 3 characters.

34


https://www.debian.org/doc/debian-policy/#document-ch-controlfields

CHAPTER 5. BASICS 5.5. NATIVE DEBIAN PACKAGE

5.5 Native Debian package

The non-native Debian package in the “3.0 (quilt)” format is the most normal Debian source package format. The
debian/source/format file should have “3.0 (quilt)” in it as described in dpkg-source(1). The above workflow
and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the package is
useful and valuable only for Debian. Thus, its use is generally discouraged.

Caution

accessible from the dpkg-buildpackage command with its correct name pack-
age_version.orig.tar.gz . This is a typical newbie mistake caused by making a

: A native Debian package is often accidentally built when its upstream tarball is not

symlink name with “-” instead of the correct one with

A native Debian package has no separation between the upstream code and the Debian changes and consists
only of the following:

* package_version.tar.gz (copy or symlink of package-version.tar.gz with debian/* files.)
* package_version.dsc

If you need to create a native Debian package, create it in the “3.0 (native)” format using dpkg-source(1).

Tip

Some people promote packaging even programs that have been written only for
Debian in the non-native package format. The required tarball without debian/*

files needs to be manually generated in advance before the standard workflow
[3°) in Section5.1. a They claim that the use of non-native package format eases

communication with the downstream distributions.

aUse of the “debmake -t ...” command or “git deborig -f HEAD” can help this workflow. See Section 6.2
and dgit-maint-merge(7).

Tip
There is no need to create the tarball in advance if the native package format is
used. The native Debian package can be created by setting the debian/sourcel-
format file to “3.0 (native)”, setting the debian/changelog file to have the version
without the Debian revision (1.0 instead of 1.0-1), and invoking the “dpkg-source

-b .” command within the source tree. The tarball containing the source is gen-
erated by this.

5.6 debian/rules

The debian/rules script is the executable script to build the Debian package.

+ The debian/rules script re-targets the upstream build system (see Section 5.18) to install files in the $(DEST-
DIR) and creates the archive file of the generated files as the deb file.

— The deb file is used for the binary distribution and installed to the system using the dpkg command.

* The dh command is normally used as the front-end to the build system inside the debian/rules script.

+ $(DESTDIR) path depends on the build type.

35



CHAPTER 5. BASICS 5.6. DEBIAN/RULES

— $(DESTDIR)=debian/binarypackage (single binary package)
— $(DESTDIR)=debian/tmp (multiple binary package)

5.6.1 dh

The dh command from the debhelper package with help from its associated packages functions as the wrapper
to the typical upstream build systems and offers us uniform access to them by supporting all the Debian policy
stipulated targets of the debian/rules file.

+ dh clean : clean files in the source tree.

* dh build : build the source tree

* dh build-arch : build the source tree for architecture dependent packages

* dh build-indep : build the source tree for architecture independent packages

+ dhinstall : install the binary files to $(DESTDIR)

+ dh install-arch : install the binary files to $(DESTDIR) for architecture dependent packages

+ dh install-indep : install the binary files to $(DESTDIR) for architecture independent packages
+ dh binary : generate the deb file

+ dh binary-arch : generate the deb file for architecture dependent packages

+ dh binary-indep : generate the deb file for architecture independent packages

Note

For debhelper “compat >= 9", the dh command exports compiler flags (CFLAGS,
CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as returned

by dpkg-buildflags if they are not set previously. (The dh command calls

set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

5.6.2 Simple debian/rules

Thanks to this abstraction of the dh command 2, the Debian policy compliant debian/rules file supporting all the
required targets can be written as simple as 3:
Simple debian/rules:

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%
dh $@

Essentially, this dh command functions as the sequencer to call all required dh_* commands at the right mo-
ment.

Tip

Setting “export DH_VERBOSE = 1" outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

2This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13 or newer.
3The debmak